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Abstract

A numerical study is presented of unsteady two-dimensional natural convection of an electrically conducting fluid in

a laterally and volumetrically heated square cavity under the influence of a magnetic field. The flow is characterized by

the external Rayleigh number, RaE, determined from the temperature difference of the side walls, the internal Rayleigh

number, RaI, determined from the volumetric heat rate, and the Hartmann number, Ha, determined from the strength

of the imposed magnetic field. Starting from given values of RaE and Ha, for which the flow has a steady unicellular

pattern, and gradually increasing the ratio S = RaI/RaE, oscillatory convective flow may occur. The initial steady uni-

cellular flow for S = 0 may undergo transition to steady or unsteady multicellular flow up to a threshold value, RaI,cr, of

the internal Rayleigh number depending on Ha. Oscillatory multicellular flow fields were observed for S values up to

100 for the range 105–106 of RaE studied. The increase of the ratio S results usually in a transition from steady to

unsteady flow but there have also been cases where the increase of S results in an inverse transition from unsteady

to steady flow. Moreover, the usual damping effect of increasing Hartmann number is not found to be straightforward

connected with the resulting flow patterns in the present flow configuration.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of liquid-metal breeder blanket for a fu-

sion reactor [1,2] has motivated various studies of MHD

flows, including natural convection. In modelling such a

system, several factors should be taken into account, in

particular the inhomogeneity of the (strong) external

magnetic field and the three-dimensionality of the enclo-

sure. Numerical simulations of buoyancy-driven flows in

cubic enclosures subject to a static homogeneous mag-

netic field [3–5] have led to some interesting results.
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2005.03.014

* Corresponding author.

E-mail address: vlachos@mie.uth.gr (N.S. Vlachos).
However, because of their simplicity and despite their

limited physical significance, investigations of two-

dimensional flows should are often considered. They

permit to analyze in more detail the dependence of the

flow when the parameters of the problem are varied in

a relatively broad range. In the present work, the influ-

ence of a homogeneous magnetic field on the natural

convection of a liquid-metal in a square cavity is being

studied, assuming that the flow is affected both by a side-

wall temperature difference and by internal heating.

The independent group of parameters that describe

the present MHD cavity flow are the external Rayleigh

number RaE = gbDTH3/ma due to the temperature differ-

ence DT (=T1 � T2) of the sidewalls, the internal Ray-

leigh number RaI = gbGH5/mka due to volumetric
ed.
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Nomenclature

B0 magnitude of the external magnetic field

f frequency

G volumetric heating rate

g gravitational acceleration

H height of the cavity

Ha Hartmann number (¼ B0H
ffiffiffiffiffiffiffiffiffiffi
r=qm

p
)

k thermal conductivity

Nu average Nusselt number

p fluid pressure

Pr Prandtl number

RaE external Rayleigh number (=gbDTH3/ma)
RaI internal Rayleigh number (=gbGH5/mka)
S RaI/RaE
DS increment of increasing S

T fluid temperature

DT temperature difference of the side walls

(T1 � T2)

t time

Dt time step

T period of an oscillation

u, v velocity components in x and y directions

x, y spatial coordinates

Greek symbols

a thermal diffusivity

b coefficient of thermal expansion

m fluid kinematic viscosity

q fluid density

r electric conductivity

s non-dimensional time

W non-dimensional stream function

Subscripts

cr critical

min minimum

max maximum

ref reference

1, 2 indices for the hot (right) and cold (left) wall
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heating G, the Hartmann number Ha ¼ B0H
ffiffiffiffiffiffiffiffiffiffi
r=qm

p
and

the fluid Prandtl number Pr = m/a. The imposed horizon-

tal magnetic field is considered uniform with constant

magnitude B0, g is the acceleration due to gravity, b is

the coefficient of thermal expansion, H is the side of

the square cavity, m is the kinematic viscosity, a is the

thermal diffusivity, k is the thermal conductivity, r is

the electrical conductivity, and q is the density. The ratio

S = RaI/RaE that determines which thermal mechanism

(internal heating or sidewall temperature difference)

has more influence on the flow and heat transfer is an-

other important parameter.

A limited number of numerical works [6–8] have been

reported for the study of simultaneously laterally and

volumetrically heated cavities. These studies, corre-

sponding to higher Pr numbers than those of liquid-met-

als, showed no oscillatory flows even at very high RaE
and RaI. In the vicinity of volumetric heat sources, Gelf-

gat et al. [9] showed that, the smaller the Pr the lower the

critical value of Grashof number (Gr = Ra/Pr) required

for the onset of oscillatory instability. Moreover, the

flow stabilization effect (connected with the external

magnetic field) for the oscillatory flow of a liquid-metal

in a laterally heated rectangular cavity was studied by

Gelfgat and Bar-Yoseph [10]. They were surprised to

conclude that the single-cell flow could be destabilized

inside thin Hartmann boundary layers even with

increasing Ha. For the case of low Pr (0.0321) natural

convection in a volumetrically heated square cavity,

Arcidiacono et al. [11] showed that the spatially symmet-

rical flow broke into asymmetric steady-state flow for

Gr � 3 · 107, while the asymmetric flow became time-
periodic for Gr � 5 · 107. Chaotic motion was also pre-

dicted for Gr P 108.

In this study, two-dimensional unsteady simulations

of MHD natural convection of a liquid-metal in a later-

ally and volumetrically heated square cavity were per-

formed in order to determine the dependence of the

flow on the internal-to-external heating ratio S as well

as on the Hartmann number. The numerical calculations

were conducted starting from the steady unicellular solu-

tion of a given external Rayleigh number with no heat-

ing (RaI = 0) and gradually increasing S until oscillatory

motion occurred. For the case of RaE = 105, steady uni-

cellular flow patterns occur for Ha > 0, while for the

case of RaE = 106 unsteady unicellular patterns were

found for Ha < 38. Thus, for the latter case, simulations

were conducted for Ha P 38 in order to start from

steady flow patterns. Numerical calculations were

carried out starting from S = 0 and gradually increasing

S up to the value of 100. Results were obtained up to the

moderate value of Ha = 22 for the case of RaE = 105 and

Ha = 76 for the case of RaE = 106. For higherHa values,

the flow remained steady for all the S values studied.

The total number of unsteady simulations summarized

in the present work is about 1500.
2. Mathematical formulation and numerical details

Consider the two-dimensional square cavity of Fig. 1

of side H filled with a liquid-metal. The right wall is

maintained at a uniform constant temperature T1, while

the left at a lower temperature T2. The liquid-metal
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Fig. 1. Flow geometry and boundary conditions.
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contained in the cavity is also subjected to a uniform

internal volumetric heating of power G. The top and

bottom walls are thermally insulated. The electrically

conducting fluid interacts with an external horizontal

uniform magnetic field of constant magnitude B0.

Assuming that the flow induced magnetic field is very

small compared to B0 (low-Rm approximation [12])

and considering electrically insulated cavity walls, the

electromagnetic force can be reduced to the damping

factor �B2
0v [13], where v is the vertical velocity compo-

nent. Thus, the Lorentz force depends only on the veloc-

ity component perpendicular to the magnetic field.

According to Ostrach [14], for highly convective flows

of low-Pr number fluids like the liquid-metal considered

here, the most suitable reference velocity is: uref =

(gbDTH)1/2. Thus, the governing equations (continuity,

momentum and energy) can be put into dimensionless

form by scaling the length with the heightH of the cavity,

velocity with uref, pressure with qu2ref , temperature with

DT, magnetic induction with B0, and time with H/uref.

The dimensionless temperature is defined as T =

(T* � T2)/DT, where T* is the fluid temperature. Consid-

ering a Newtonian fluid and assuming that the flow

satisfies the Boussinesq approximation, the governing

equations can be written in dimensionless form as:

r � v ¼ 0 ð1Þ

ov

ot
þ ðv � rÞv ¼ �rp þ T jþ Pr

RaE

� �1
2

r2v� Ha2
Pr
RaE

� �1
2

vj

ð2Þ

oT
ot

þ ðv � rÞT ¼ 1

PrRaE

� �1
2

r2T þ RaI

ðRa3E PrÞ
1
2

ð3Þ

where v is the velocity vector, t is the time, p is the pres-

sure, and j is the unit vector along the +y axis.
No-slip boundary conditions are imposed at all

boundaries,

v ¼ 0 on x ¼ 0; 1 and y ¼ 0; 1 ð4Þ

constant temperatures at the vertical walls,

T ¼ 0 on x ¼ 0 and T ¼ 1 on x ¼ 1 ð5Þ

and zero heat fluxes at the horizontal walls,

oT=oy ¼ 0 on y ¼ 0; 1 ð6Þ

The effect of viscous dissipation and Joule heating on the

present flow are neglected. These simplifications are al-

most universal for all MHD natural convection flows.

A comprehensive justification for the latter can be found

in Gelfgat and Bar-Yoseph [10].

For Pr = 0.0321 some selected values of RaE and var-

ious Ha, the numerical calculations are initialized from

steady unicellular solutions for S = 0 and are continued

by gradually increasing S up to 100. The gradual runs

start from S = 0.1 using the solutions for S = 0 as initial

conditions and continue for Snew (=Sold + DS) using

solutions for Sold as initial conditions (typically, DS =

0.1Sold).

Eqs. (1)–(3) together with the boundary conditions

are solved by using a finite-volume technique based on

the SIMPLE pressure–velocity coupling algorithm [15].

A second-order accurate implicit scheme is used for

the transient terms, central discretization for the diffu-

sion terms, and the modified QUICK scheme proposed

by Hayase et al. [16] for the convection terms. The dis-

cretized equations are solved by using the SOR method.

At each step, the solution is iterated until the normalized

residuals of the mass, momentum and temperature equa-

tions become smaller than � (=10�5), which typically is

reached in less than 50 iterations.

A nonuniform and staggered grid similar to the mesh

distribution of Janssen et al. [17] was used. Special con-

sideration for the number of grid points is given so that

the narrow Hartmann boundary layers are adequately

covered at the boundaries. A fruitful discussion for the

thickness of Hartmann layers in buoyancy-driven con-

vection could be found in Alboussière et al. [18]. The ef-

fect of spatial and temporal size increments on the flow

and heat transfer characteristics have been examined for

the higher values of the parameters considered in the

present calculations. Grid independence tests showed

that for the case RaE = 106, Ha = 38 and S = 100, a grid

of 71 · 71 size results in less than 2% relative error of the

maximum streamfunction and the average Nusselt num-

bers from the finer grid of 101 · 101 used. The time

increment has been tested in the range of 0.0001–0.01.

Considering the accuracy and the computational cost,

a time step of Dt = 0.002 was used for the present

calculations.
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3. Numerical assessment

In a previous work [19] the present numerical method

was compared successfully with the work of de Vahl

Davis [20] for the steady-state flow of a laterally heated

cavity. The unsteady hydrodynamic part of the present

numerical method (Ha = 0) was tested also against the

work of Shim and Hyun [8] for a laterally and volumet-

rically heated cavity. Due to a higher Prandtl number

(Pr = 0.7) used in their work, only the initial transients

and the final steady-state fields could be compared.

The numerical solutions for RaI = 0 and various RaE
were used as initial stages for the unsteady calculations.

At t = 0, the internal heat sources were suddenly

switched on. After several time steps the flow become

again steady state. As Table 1 shows, the results of the

present model are in very good agreement with those

of Shim and Hyun [8].

The gradual numerical method which is adopted in

the present study was essentially the same proposed by

Wakitani [21] for the study of natural convection in a

vertical cavity. The case for a cavity with aspect ratio

(height/length) 20 for a fluid with Pr = 0.71 (air) was

used for testing the numerical method. Starting from a

steady single-cell flow pattern for Ra = 103, a five-cell

pattern was observed for Ra = 8 · 103, unsteady multi-

cellular patterns for 2.3 · 104 < Ra < 3.8 · 104, a steady

single-cell flow pattern for 3.8 · 104 < Ra < 1.3 · 105,
Table 1

Comparison of the present method against Shim and Hyun [8]

Wmin Tmax Wmin

RaE = 105, RaI = 106 t = 0 t = 0.01

Present �13.72 0.5 �14.83

Shim and Hyun [8] �13.7 0.5 �14.8

RaE = 105, RaI = 107 t = 0.005 t = 0.008

Present �17.13 1.048 �22.0

Shim and Hyun [8] �17.1 1.05 �22.0

Table 2

Comparison of the present onset of oscillatory flow with Gelfgat and

Grcr Ha

Gelfgat and Bar-Yoseph [10] 1.32 · 105 0

Present 80 · 40

Present 140 · 70

Gelfgat and Bar-Yoseph [10] 5.37 · 106 20

Present 80 · 40

Present 140 · 70

Gelfgat and Bar-Yoseph [10] 5.50 · 106 20

Present 80 · 40

Present 140 · 70
steady five and four-cell patterns for 1.3 · 105 <

Ra < 4 · 105, and finally unsteady double-cell flow

patterns were observed for Ra > 4 · 105. Furthermore,

the present method was capable to predict satisfac-

torily the frequencies and the amplitudes of the velocity

and the temperature time evolution for the indicated

case of Ra = 2.6 · 104. Considering possible differences

in the increments chosen for Ra, the gradual results of

the present model are in good agreement with those of

Wakitani [21].

The ability of the present numerical model to predict

the onset of an oscillatory flow in laterally heated rectan-

gular cavities under external magnetic fields was tested

against the results of a stability analysis conducted by

Gelfgat and Bar-Yoseph [10]. The aspect ratio (length/

height) of the cavity was 4 and it was filled with a low

Prandtl number fluid (Pr = 0.015). The case of a sin-

gle-cell flow under the influence of a horizontal magnetic

field was considered. Comparisons were based on three

cases of critical Grashof numbers, 1.32 · 105, 5.37 ·
106 and 5.50 · 106. The first two, for Ha = 0, correspond

to steady-state solutions, while the third for Ha = 20

corresponds to an oscillatory flow. The results presented

in Table 2 for the minimum and the maximum values of

the streamfunction for the steady-state cases and the

period of the oscillation (T) for the unsteady case are

in good agreement (relevant error less than 0.3% for a

140 · 70 mesh size) with those of Gelfgat and Bar-
Tmax Wmin Tmax Wmin Tmax

t = 0.05 t = 0.1

0.5 �16.79 0.748 �17.01 0.868

0.51 �16.8 0.75 �17.0 0.87

t = 0.01 t = 0.02

1.439 �24.05 1.708 �24.489 2.948

1.44 �24.0 1.71 �24.5 2.95

Bar-Yoseph [10]

Wmin Wmax T

0.0 79.625 –

0.0 79.226 –

0.0 79.453 –

�1.919 365.18 –

�2.738 262.85 –

�2.002 364.16 –

– – 3.3 · 10�3

– – 2.51 · 10�3

– – 3.3 · 10�3
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Yoseph [10]. In fact, they have used successfully a simi-

lar numerical method to validate their own results of a

stability analysis, unfortunately without providing

details about the grid size and time step used.
4. Results and discussion

4.1. Flow and temperature fields

Fig. 2 shows typical streamlines and isotherms for

RaE = 106 and various values of Ha and S numbers.

All these cases correspond to steady-state flow and are

used to demonstrate the different flow patterns that

could exist depending firstly on the imposed heating

and secondly on the magnitude of the magnetic field.

Fig. 2a corresponds to a unicellular flow pattern, as a re-

sult of the low S value of 5.5. Although internal heating

is relative small in this case, its effect has started to be

significant as illustrated by the isotherms. The internal

heat added into the fluid has the tendency to increase

the temperature of the upper fluid layers in the enclo-

sure, a fact that also determines the shape of the stream-

lines. The bicellular flow pattern of Fig. 2b corresponds

to a higher S value of 14.5. The temperature gradient be-

tween the hotter upper wall and the colder right sidewall

is the reason for the formation of the second local circu-

lation. The fluid temperature in the enclosure is higher

than that of the sidewalls as a consequence of the in-

creased internal heating. Acharya and Goldstein [6]

showed that as the ratio S become higher than 10, the

resulting temperature distribution is suitable for the

formation of an almost similar intensity steady-state cir-

culation pair at S � 100. Thus, the temperature of the

mid-plane of the cavity is much higher than the temper-

ature of the sidewalls. These flow patterns are extended
(c)

(a) (b

(d

Fig. 2. Streamlines (left) and isotherms (right) for steady-state flow

S = 5.5; (b) bicellular pattern forHa = 52, S = 14.5; (c) bicellular patte

All contour plots have been normalized with their maximum value. Co

�0.4 and �0.6, and the increment of the isotherms is 0.1.
on the whole right and left subdomains of the cavity, as

in the case of the volumetrically heated square enclosure

reported by Arcidiacono et al. [11] for Gr = 105. This

phenomenon is rather impossible to appear in the

present low Prandtl number fluid flow because of the

increased convection (the corresponding Gr number

for RaE = 106 is approximately 3 · 107). Fig. 2c shows

a bicellular pattern with the same features as mentioned

above that could be formed due to the strong magnetic

field imposed (high Ha number). As the ratio S

decreases, a third smaller cell appears at the bottom

right corner of the cavity as a result of the temperature

difference between the hot fluid layer and the colder

wall. For higher S numbers, the lower circulation

emerges with the upper one. The formation of the

three-cell flow pattern is illustrated in Fig. 2d.

A general observation concerning the stability char-

acteristics of all flow patterns shown in Fig. 2 can be

made from their corresponding isotherms where areas

of hot fluid layers below cold layers are observed. It is

known from hydrodynamic stability theory (e.g. [22])

that when light fluid is below heavy fluid, the density dis-

tribution could lead to an instability and oscillations.

This stability theory is also valid for the case when Lor-

entz forces are acting on the fluid body as discussed

below.

Having as initial conditions the solution of a previous

simulation with lower ratio S, the time evolution of the

flow could be steady or unsteady depending on the sta-

bility characteristics of the flow at the increased ratio S.

These two representative transition situations of the cur-

rent flow are shown in Fig. 3 where the time evolution

of the horizontal velocity and the temperature at

(x,y) = (0.2,0.8) is presented. The onset of a time-peri-

odic unsteady flow due to the growth of travelling wave

disturbances for the case RaE = 106, S = 14.42 and
)

)

cases of RaE = 106: (a) unicellular flow pattern for Ha = 38,

rn forHa = 76, S = 80.2; (d) 3-cell pattern forHa = 52, S = 28.1.

nstants of stream function are 0.8, 0.6, 0.4, 0.2, 0.1, �0.1, �0.2,
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Ha = 40 is shown in Fig. 3a. This case corresponds to

the transition from steady to unsteady bicellular flow

for t > 40. The opposite situation of reverse transition

from unsteady to steady bicellular flow pattern occurs

at t > 50 for the case of RaE = 106, S = 80.17 and

Ha = 66, as shown in Fig. 3b.

A complete picture of the flow patterns is shown in

Fig. 4a and b for RaE = 105 and 106, respectively, and

for the range of S and Ha numbers studied. These have

been constructed from the 1500 unsteady flow cases

mentioned earlier. For RaE = 105 and S 6 10, a unicellu-

lar steady flow pattern is observed which is totally unaf-

fected by the Hartmann number as shown in Fig. 4a. A

similar conclusion can be drawn for the higher RaE case

of Fig. 4b, for S 6 7. Thus, the increase of RaE causes a

shrink of the area occupied by the unicellular flow pat-

terns. Moreover, all unicellular flow patterns for

RaE = 105 studied here appear to be steady state, while

for RaE = 106 and Ha < 38 the unicellular flow patterns

are unsteady. Thus, the role of the magnetic field in the

formation of the unicellular flow patterns is to determine

their oscillatory features as RaE increases. On the other

hand, the magnetic field has an increased influence on

the oscillatory characteristics of 2-cell and 3-cell flow

patterns. For RaE = 105, almost all the parameter area

defined by Ha < 4 and 10 < S < 20 is occupied by 3-cell

steady and unsteady flow patterns. For the higher values

of the ratio S, besides the dominant 3-cell flow structure,

a number of smaller local cells could appear. The

remaining parameter area is occupied by 2-cell flow pat-

terns. In contrast, for RaE = 106, 3-cell steady and un-

steady flow structures are extended for almost all the

Ha numbers studied and confined in a very short range

of S numbers. Thus, both Fig. 4a and b are in agreement

with the main tendency of the present flow to form bicel-

lular flow patterns as the ratio S increases. Moreover, it
) Ha

S
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seems that, for RaE = 106, the higher the Ha number is,

the higher the range of the S numbers required for the

formation of the 3-cell structures.

The role of the ratio S and the magnetic field intensity

on the flow stability is also clearly demonstrated in Fig. 4.

The magnetic stabilization effect in buoyant convection

flows has been the subject of many works, among others

by Kaddeche et al. [23]. One could expect that the higher

the Ha number, the higher the S number where steady

flow patterns appear, although this statement is not quite

accurate for the present case as illustrated in Fig. 4. In
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Fig. 5. Time evolution of horizontal velocity and temperature

(marked with d) at (x,y) = (0.2,0.8) for RaE = 106 and S ’ 41:

Ha = 38 (solid lines), Ha = 76 (dashed lines).

(a) (b)

Fig. 6. Streamlines (top) and isotherms (bottom) for RaE = 106, S ’
patterns for Ha = 76; (c) patterns for Ha = 100 (increments as in Fig
fact, for RaE = 105, there are two areas, in which the in-

crease of Ha number with increasing S number leads

from steady to unsteady flow, returns to steady flow as

S increases and finally, for high S values, returns to un-

steady flow patterns. The first small area is confined at

2 < Ha < 4 and 10 < S < 15 and corresponds to the re-

gion when the unicellular flow pattern changes to a 3-cell

pattern. The second larger area is confined at 8 < Ha <

18 and 20 < S < 40 and is located near the region of the

transformation of the 3-cell flow patterns to bicellular

one. For RaE = 106, this phenomenon is less intense but

still present and connected straightforward to the change

of the flow patterns from 2-cell to 3-cell structures in the

area of Ha < 50 and 10 < S < 30.

The results for the representative case of RaE = 106

and S = 41.14 at two Ha numbers (38 and 76) are se-

lected to illustrate the effect of increasing magnetic inten-

sity on the flow and temperature fields. As shown by the

time evolution of the horizontal velocity and tempera-

ture in Fig. 5, the increase of the Hartmann number re-

sults primarily to the switch-off of the oscillations. The

increase of the conduction heat transfer mode with

increasingHa, causes also a decrease of the fluid velocity

at (x,y) = (0.2,0.8) and an increase of the temperature.

The shape of the flow and temperature fields is also

affected by the increase of the Hartmann number as

shown in Fig. 6. The time averaged isotherms of the un-

steady case RaE = 106, S = 41.14 and Ha = 38 shown in

Fig. 6a indicate that only in the core region of the left

wider circulation cell hot fluid is below colder one which

is a characteristic configuration for the initiation of flow

unsteadiness. The increase of Ha number results in a

more stratified temperature field which is unable to give

oscillatory flow. For S� 1 and very intense magnetic
(c)

41: (a) time averaged patterns for Ha = 38; (b) steady-state

. 2).
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fields, one should expect the formation of an almost

identical pair of flow circulations as a result of the

near-symmetric temperature distribution with respect

to the enclosure mid-plane. Similar flow patterns have

been reported also for the lower convective cases of

the volumetrically heated enclosures by Arcidiacono

et al. [11]. In order to verify this hypothesis, in addition

to the above two cases of Ha = 38 and 76, a special sim-

ulation was conducted for Ha = 100, taking as initial

conditions the solution for Ha = 76. For the lower Ha

value of 38, the time averaged recirculations of Fig. 6a

extend in each side of the enclosure, with the left being

wider, but close to a symmetric solution. In spite of

our initial guess, as the Hartmann number increases,

the right smaller circulation has the tendency to occupy

a wider space at the upper layers of the enclosure, as

shown in Fig. 6b for the steady-state case of Ha = 76

and in Fig. 6c for the case of Ha = 100.

For the above case of Ha = 76 (corresponding to a

steady-state 2-cell flow) after some short initial tran-

sients, both velocity and temperature are stabilized due

to the strong damping magnetic force. The opposite sit-

uation is observed for the case of Ha = 38, which corre-

sponds to an unsteady 2-cell flow pattern. At about

t = 25, the monitoring of the velocity and temperature

indicates the onset of a transition to a time-periodic

flow. Only one frequency for both quantities is present

in this unsteady case. A detail of the periodic time evo-

lution of the horizontal velocity and the temperature at

(x,y) = (0.2,0.3) of the enclosure is shown in Fig. 7. The

internal streamline plots correspond to characteristic

locations in the period of the velocity time series. It ap-
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Fig. 7. Temporal variation of horizontal velocity (solid line)

and temperature (dashed line) at (x,y) = (0.2,0.3) for

RaE = 106, S � 41 and Ha = 38. Internal streamline plots at:

(a) t = 392.2; (b) t = 393.3; (c) t = 394.4 and (d) t = 396

(increments as in Fig. 2).
pears also that the flow unsteadiness is caused mostly be-

cause of the fluid circulation of the left larger cell, rather

than a complete rearrangement of the flow structure.

The above case of single-frequency, time-periodic

flow is not representative for all the oscillatory flow

cases studied here. In fact, for a wide range of Ha and

S numbers which result in unsteady flows, there ap-

peared multi-frequency flow patterns. For high S and

low Ha numbers, even chaotic flows are encountered,

a result that has been reported also by Arcidiacono

et al. [11] for Gr > 108. Such a chaotic case is well

depicted in Fig. 8 for the case of RaE = 106, S = 100

and Ha = 38. This figure shows the irregular time evolu-

tion of the horizontal velocity and the temperature at the

location (x,y) = (0.8,0.3).

In contrast to the time-periodic case of Fig. 7, in the

present higher convective case of S = 100, both circula-

tion cells shown in Fig. 9 are oscillatory. The isotherms

show that the instability occurs at the center of each cir-

culation cell mainly because hot fluid is below colder one

due to the cold buoyancy plume which is formed at the

middle of the cavity. In spite of the chaotic time evolu-

tion of the flow and temperature fields, the shape of

the two main circulation cells remain almost unchanged,

and no significant secondary cells are formed. Thus, the

chaotic behavior of this flow is the result of the aperiodic

motion of the fluid in the core regions of the cells. It

seems that higher values of the S ratio are required for

a complete rearrangement and formation of small and

multiple circulation cells (a more familiar picture of

chaotic flows).

It is interesting to examine the power spectral density

of the above primitive-stage turbulent flow in order to
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Fig. 9. Streamlines (top) and isotherms (bottom) for RaE = 106, S = 100, and Ha = 38: (a) t = 390; (b) t = 395; (c) t = 400. Contours

normalized by maximum value. Increments as in Fig. 2.
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compare it with the four regions of the power spectrum

reported by Di Piazza and Ciofalo [24] for a volumetri-

cally heated slender cavity with Gr = 1.29 · 109. The

power spectrum shown in Fig. 10 was calculated from

the time evolution of the horizontal velocity at

(x,y) = (0.2,0.8) from t = 0 to t = 400. An inspection

of the spectrum shows that all four areas described in

[24] are also present here. Thus, the first low-frequency

region is formed for f < 0.04 where broad peaks appear.

Unlike the spectrum of [24], for 0.04 < f < 0.3 a region of

significant power is formed with almost uniform distri-

bution. Probably this region corresponds to the near-

periodic oscillations of the outer layers of the main

circulation structures. The second intermediate energy-

containing region of [24] is also formed here in the

narrow range of 0.3 < f < 0.5. This region is character-

ized by a slope close to �5/3, predicted by Kolmogorov�s
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Fig. 10. Power spectrum of horizontal velocity at (x,y
theory of homogeneous turbulence. The third dissipa-

tion region of [24] is also formed for 0.5 < f < 3 which

is characterized by a decrease of the power content of

the fluctuations. The slope of �6 encountered in this

region is also predicted by [24]. The last region is a

numerical tail due to the FFT algorithm and extends

up to f = 250.

4.2. Heat transfer

The heat transfer characteristics of the present flow

configuration are of technological importance, mainly

because of the existence of the magnetic field. As Al-

Najem et al. [25] showed, the increase of the Hartmann

number causes reduction of the heat transfer rates from

the cavity sidewalls. This phenomenon is related to the

damping effect of the increasing magnetic field which
uency
00 101 102 103

-6 slope

) = (0.2,0.8) for RaE = 106, S = 100 and Ha = 38.
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results in the domination of conduction over convection

heat transfer. A measure of the heat transfer rates at the

cavity walls is the average Nusselt number defined by

Shim and Hyun [8] for the left wall as:

Nu ¼
Z 1

0

oT
oX

� �
X¼0

dY ð7Þ

The values of the average Nusselt number at the left

sidewall for the range of S and Ha numbers studied

are presented in Fig. 11a and b for RaE = 105 and 106,

respectively. For the unsteady flow cases, the corre-

sponding Nusselt number has been time-averaged. The

increase of S results in an increase of the heat transfer,

as a consequence of the heat added internally. For the

relatively small range of Hartmann numbers studied,

no significant influence of the magnetic field on heat

transfer could be discerned. As showed by Acharya

and Goldstein [6], the overall energy balance in the cav-

ity requires that:Z 1

Y¼0

� oT
oX

� �
X¼0

dY þ RaI
RaE

�
Z 1

Y¼0

� oT
oX

� �
X¼1

dY ¼ 0

ð8Þ

The above criterion was satisfied in all the calculations

presented here. Another reason for the insignificant

influence of the magnetic field on the heat transfer is

the low Prandtl number of liquid-metals used in this

study. It is known that when Pr ! 0, the temperature

appears to be only a function of the coordinates. Thus,

the temperature distribution is controlled mainly by dif-

fusion rather than convection heat transfer.
5. Conclusion

A numerical study of unsteady two-dimensional

MHD natural convection of a liquid-metal in a laterally
and volumetrically heated square cavity was presented.

The range of parameters studied was from 105 to 106

for the external Rayleigh number, RaE, 0 to 100 for

the ratio S = RaI/RaE, where RaI is the internal Rayleigh

number and a range of Hartmann numbers, Ha, for

which the flow for S = 0 was steady. The flow patterns

appeared to be steady unicellular and multicellular or

unsteady multicellular. For RaE = 105 and S 6 10, and

for RaE = 106 and S 6 7, unicellular flow patterns oc-

curred. For RaE = 105, the area defined by Ha < 4 and

10 < S < 20 corresponded to 3-cell steady and unsteady

flow patterns, while the remaining area to 2-cell flow

patterns. For RaE = 106, 3-cell steady and unsteady flow

structures were obtained for all Ha numbers studied and

a narrow range of S numbers. The flow oscillations were

reduced or vanished for increased Hartmann numbers

due to the magnetic field damping effect, but not analo-

gous to the increase of the ratio S. The heat transfer is

enhanced with increasing S, but no significant effect of

the magnetic field was observed due to the small range

of the Hartmann numbers studied.
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